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AbstracL We used a high-temperature sm-graph expansion to compute the susceptibility of 
a q-state Potu glass with a bimodal distribution of the mdom bonds. The series are up to 
order O(20) in K = ,W. In three dimensions our mul l  shows excellent consistency with 
existing Monte Carlo daIa The results for the fhree-smte PoN glass in three to ten dimensions 
are analysed using dlog Pad6 approximanu and the Adler-Moshe-Privman (AMP) method in 
combination with variable transformations. The analysis suppom d = 3 m lower critical 
dimension with an exponential singularity at T, = 0. as concluded earlier using Monte Carlo 
data. According 10 OUT analysis the upper critical dimension is d = 8, which is in contrast to 
earlier papers. 

1. Introduction 

Spin systems with competing interactions which are randomly distributed often show a 
glassy state at sufficiently low temperatures. The related concepts are used more and more 
to describe so-called orientational glasses [l] such as mixed crystals of K(Br,CN), mixed 
ortho- and para-hydrogen or nitrogen diluted with argon. In these systems only one species 
has an orientational degree of freedom. If one confines the number of possible orientations 
to a finite number, it is quite intuitive to use spins for modelling this situation. The q- 
state Potts glass can serve as a generic model for such systems. Symmetries play a very 
important role in critical phenomena. In the king case we have a spin-inversion symmetry, 
which means that flipping all spins of a systems without an external magnetic field into 
their opposite directions yields the same energy. However, this is not true for the Potts 
glass for q 3, where q is the number of possible directions the spin can point to, simply 
because there is no unique 'opposite' direction of an orientation. There are a lot of systems 
which do not have spin-inversion symmetry so these systems could be modelled by the 
Potts glass. Besides, it is a natural extension to the king glass, which has been studied very 
extensively [Z]. There are a lot of essential differences to the Ising case which make this 
model far more complex and rich in behaviour. First of all, as already mentioned, there is 
no spin-inversion symmetry. The frustration in the model depends on the number of states 
q a spin can have-it disappears in the limit q + 00. For q > 2 the antiferromagnetic 
system has no unique ground state; this results in a non-vanishing ground-state entropy of 
the glass 131. Furthermore, we have a rich behaviour through combinatorial effects which 
are trivial in the king case. In the Landau expansion of the Hamiltonian the fourth-order 
term changes sign at q % 2.8 [1,4]; this is responsible for the difference between the Ising 
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case and the general Potts case i n  the mean-field (MF) treatment. For large enough q in MF 
a first-order phase transition occurs [4]. 

G Schreider and J D Reger 

We studied the q-state Potts glass defined by the Hamiltonian 

The sum runs over all nearest-neighbour pairs of spins on the lattice. The spins can be in 
q different states. The spin-spin interaction energies J;,j are quenched random variables. 
The distribution is chosen to be bimodal: 

P ( J i , j ) = ; ( J ( J i , j -  J ) + J ( J i . j + J ) ) .  (1.2) 

We studied a static magnetic response function, the Edwards-Anderson (EA) susceptibility, 
defined as [l] 

The angular brackets refer to thermal averaging, while square brackets refer to an average 
over the disorder. We computed the inverse susceptibility by means of a star-graph 
expansion to order O(10) in KZ for arbitrary q and for arbitrary dimension d of a hypercubic 
lattice. The method is described in detail in a previous paper [ 5 ] ,  where the series are 
published in the appendix. In this paper we will analyse the results for the three-state Potts 
glass in order to estimate the upper and lower critical dimension of the model. We will 
then discuss our findings in the light of other results. 

2. Results 

For a first impression of the data the susceptibility series in three to ten dimensions are 
plotted as functions of the temperature (figure 1). The series in three and four dimensions 
bend over, which is an artefact of working with a truncated series and indicates the negative 
sign of the last term in the series. 

According to the changing signs of the terms in the series below five dimensions, one 
finds this bending for series of order 8, 10 and so on. This irregular change of sign in 
the terms of the series is the reason for the failure of analysis methods, based on the ratio 
method. 

The result in three dimensions can be compared with known Monte Carlo (MC) data [6] .  
In figure 2 there is no rescaling done; just the raw data were plotted. We find a very good 
agreement if some higher Pad6 approximants, [:I. [$] or [g], are used for comparison with 
the raw MC data. Additionally to the Pad6 approximants we plotted the series in nine and 
ten terms. 

In order to find the right singularity approximated by this finite expansion, we used our 
knowledge of how this function should look. It is generally assumed that such observables 
can be described by scaling functions F ( p )  which show a simple power-law behaviour at 
the critical temperature. 

F ( P )  - A(PC - P)-’ P + P c .  (2.1) 

If one wants to look for power-law singularities in the data then the Pad6 approximant 
method is the right choice. There are problems applying this method to series where one 
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?-state POTTS glass in 3-10 dimensions 
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Figure 1. The series with ten terms fmm the high-temperature expansion of (1.3) in different 
dimensions (3~-100) on hypercubic lauices plotted as a function of the tempemure. 
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Figure 2. Monte Carlo data from 161 in comparison to the series and some Padd approximaots. 

has coduent singularities but it works well if they are small. A Padd approximant [ L / M ]  
of a series is a rational function 171 
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where the first N = (L + M + 1) coefficients of the Taylor expansion of [ L / M ]  are 
determined in such a way that they are equal to the coefficients of the series. In this way 
one can compute a table of rational functions with ( N  - 1)2 entries. The singularities of 
the function F ( p )  M represented by the poles of the rational functions. If the assumed 
function F ( p )  is of the form (2.1) then the logarithmic derivative is 
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Computing the Pad6 approximants for this function should result in a pole at pc  and a 
corresponding residue of - y .  If the numerator has a zero at the position of a pole, i.e. a 
zero of the denominator, this is called a defective approximant and it is discarded in the 
analysis. A rational function can have many poles, but only the one next to zero is assumed 
to be the physical one. If one sees more or less the same pole and residue for different 
a p p r o x h t s  then the analysis can be trusted. The physical singularity, i.e. the transition 
temperafure, is found and the Corresponding residue is the critical exponent. This works 
well for all series in ten to six dimensions. We can get estimates of the critical temperature 
and the critical exponent as well within an accuracy of 2-5% with our data. 

We can refine these results further. To this end it is assumed that the function does not 
show the simple power law (2.1) but a power law with higher-order correction terms as 
they are assumed from renormalization-group calculations 

F ( p )  - A ( p , - p ) - Y [ l + A ~ ( p , - p ) A ' + A z ( p , - p ) + . ' , ]  P - f  P c .  (2.4) 

In order to analyse functions with this scaling form one uses a variable transformation 
technique known as the AMP method [7,8]. The use of modem graphical analysis tools 
[9] enables one to analyse the given series in a very accurate way. For a given set of 

Figure 3. AMP analysis of Ihe susceptibility of the three-srate Pas glass in d = 6 on a hypercubic 
laice. Parameten as in (2.4). 
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Figure 4. The critical temperature from the AMP analysis versus lattice dimension, added from 
[61 the MC result in d = 4. 
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Figure 5. The critical exponent y f" the AMP analysis versus lattice dimension, added from 
[61 the MC result in d = 4, y = (2 - ? ) w  is used to compute y fmm the MC data 

parameters ( p c  and A I )  of the variable transformation one calculates new series and their 
Pad6 appmximants, as well as their poles and residues as stated above. It is known that 
the 'right' choice of the parameters, i.e. the ones that fit the series best to the estimated 
behaviour, appears as a converging of the curves in the plot [9]. An example of such 
behaviour is shown in figure 3, where the data for dimension d = 6 are shown. For a set of 
five values of the assumed critical temperature p = (1.00-1.16) and for several values of 
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A ,  the residues y are calculated. Each point in the figure represents a residue. Each plane 
in the figure belongs to one assumed critical temperature. The converging of the curves 
can be seen in the centre plane at the critical temperature p = 1.08. A two-dimensional 
plot of this plane enables us to determine the value of y to be y = 1.54 f 0.03. This 
is well above the mean-field value of 1.0 which is clearly outside the error bars of this 
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analysis. 
This analysis was carried out for dimensions 5-10. The values of the critical temperature 

and the critical exponent are plotted as function of the Iattice dimension in figures 4 and 5. 
One sees a smooth behaviour of the values as functions of the dimension. The critical 

temperature decreases from 1.4 in ten dimensions to 0.8 in five dimensions. This can 
be understood as follows. If we assume that there is one constant energy scale for the 
critical coupling constant, then reducing the coordinate number of the lattice, z, has to be 
compensated by reducing the critical temperature, T,, in order to keep the coupling constant: 

Our result for the critical temperatures in five to eight dimensions agrees within the 
error bars with the results of Singh [lo], but the exponents he found are different. It is 
strange that the exponents he got below d = 6 are smaIIer than unity, which indicates to us 
that there is a problem with his series. Additionally, his series in d = 3 differs from the MC 
data below 0.7 [6], although his series has one term more than ours, whereas we do find 
excellent agreement of our series with the MC data down to 0.6. 

Above eight 
dimensions we do have mean-field behaviour, but below we see a value of y which clearly 
exceeds 1.0 and is rising as the dimension is further reduced. If we assume that mean-field 
behaviour is defined such that all critical exponents have mean-field values simultaneously, 
this means that the upper critical dimension of the three-state Potts glass is 8. This is a new 
result, which is in contrast to earlier papers which assume that the upper critical dimension 
of the Potts glass is 6. This latter assumption is a sole extension of the Ising-glass result, 
which was obtained by using the hyperscaling relation 

2 8 + y = 4 v  (2.6) 
and inserting the mean-field values of the exponents 8 = y = 1, U = [ 1 I]. This argument 
led to the right value of the upper critical dimension of the Ising spin glass d, = 6 and 
it was assumed that the same is true for the Potts glass. This is the reason why in field- 
theoretical studies (6 - 6)-expansions are done. However, since the mean-field results for 
the Potts glass already differ in essential points from the Ising glass [4], we doubt that the 
above-mentioned assumption is justified. In the light of our result it would be better to 
do an (8 - €)-expansion. There are also some field-theoretical results which give some 
indication that 6 might not be the m e  upper critical dimension for the Potts glass [12. 131. 
They were interpreted as a fluctuation-driven phase transition of first order for values of 
q < 3.77 below eight dimensions. 

So far we have analysed the data in higher dimensions, but what about 'physically 
relevant' dimensions? As we can see from the dlog Pad6 analysis, the method breaks 
down in four and three dimensions. There are mainly two possible explanations for that: 
firstly, the data are not good enough to see the asymptotic behaviour; secondly, there is 
no singularity that can be detected by this method. We first possibility is difficult to 
understand, because in higher dimensions the data did show good results, therefore the 
second possibility will serve as a basis for our further investigations. What kind of 'other' 
singularities might be present in the susceptibility which cannot be detected by the AMP 

The behaviour of the critical exponent y is even more interesting. 
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method? We think that the strongest singularities might be exponential singularities. There 
are some other indications that this kind of singularity might indeed be the one we face 
in the threedimensional case. If we look at the dependence of the critical exponent on 
the lattice dimension we see a steep rising of the values with falling dimension. If an 
exponential singularity is present in three dimensions, this would be indicated by a value 
of infinity in figure 5, because an exponential singularity is stronger than any power-law 
singularity. This steep rise may be a first indication of a behaviour of this kind. Another 
hint comes from a theoretical point of view. There is a simple scaling theory for spin glasses 
with symmetric bond distributions 1141 which predicts a singularity of the correlation length 
like 

b~ - exp(cK') (2.7) 

at the lower critical dimension. Using the relation between the correlation length and the 
susceptibility, which holds for any dimension 

a similar behaviour should be seen in the spin-glass susceptibility. 
If we could transform this kind of singularity into an ordinary power-law singularity we 

could see it with our available tools. Let us have a look at the natural variable emerging in 
the computation of the susceptibility. In the case of the king model this is the hyperbolic 
tangent. In the q-state Potts model it is 

This reduces to tanh(K2) in the q = 2 case with a bimodal distribution. The tanh is an 
odd-symmetric function. In the general case q # 2 there is no symmetry at all. Expanding 
tanh(K2) for T -+ 03 a K -+ 0 gives 

(2.10) 

We want to do a biased analysis of our data for the presence of such a singularity. Using 
the new variable y := tanh(KZ) in our eansformed series we can do an AMP analysis. The 
result is shown in figure 6, which shows good convergence of the curves at a critical value 

tanh(K2) - 1 - 2exp(-2K2). 

of yc = 1. 
With the help of (2.10) this value transforms into 

I = ye = I - exp(-zK,2) (2.11) 

which yields a critical temperature of auctly T, = 0. This is a strong indication that d = 3 
is indeed the lower critical dimension and that we do have a exponential singularity of the 
form 

XSG - exp(cK*) . (2.12) 

We also did biased analyses for exp(K) and exp(K3) but could not find a clear cut 
singularity. Thus our data confirm the result found independently by MC simulation [6] 
that there is a exponential singularity at T, = 0 with a non-trivial exponent U = 2. This 
behaviour of the three-state Potts glass with bimodal distribution is consistent with the 
scaling predictions of McMillan [I41 for a spin glass at its lower critical dimension. 
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F w e  6. AMP analysis of the in d = 3 00 a cubic Inttice. ?ammeters as in (2.4) 

3. Outlook 

It is p h e d  to analyse the series for other numbers of spin orientations q. By this means it 
may be possible to obtain a map of the critical exponent y in the (q, d)-plane. This will help 
us to understand the dependence of the type of phase transition on typical model parameters, 
as it is known that the q-state Potts ferromagnets show different phase transitions depending 
on the location of the model in the (q, d)-plane [I51 and it is widely believed that this also 
applies to Potts glasses. 
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